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The Macroscopic Quatum Model of Superconductivity
We do this before developing the MICRO-scopic theory of superconductivity.
The key statement is the following: Superconductivity is inherently a quan-

tum mechanical phenomenon that manifests itself on macroscopic scales.
So develop a macroscopic quantum model to "explain" superconducting phe-

nomena.

0.1 Review of QM
Review of Basic Quantum Mechanics for single particles:
Time-dependent Schrodinger equation
Probability amplitude for finding the particle
Normalization condition on the wavefunction
Probability current
Continuity equation for probability density
Charged particle under the influence of electric anf magnetic fields, with asso-
ciated scalar and vector potentials
Schrodinger equation including φ and

−→
A

Probability current including
−→
A

0.2 Macroscopic Quantum Treatment of Superconductors
Hypothesis: There exists a macroscopic quantum wavefunction Ψ(−→r , t) that
describes the behavior of the entire ensemble of super-electrons in the supercon-
ductor.
Here Ψ(−→r , t) is a field-like quantity that describes the coherent behavior of the
super-electrons.
Normalization constraint for the Macroscopic QuantumWave Function (MQWF):´

Ψ∗(−→r , t)Ψ(−→r , t)dV = N∗, where N∗ is the total number of super-electrons
that the MQWF describes. Note that ∗ is NOT complex conjugation here (N
is real)!
Therefore, the local density of super-electrons is Ψ∗(−→r , t)Ψ(−→r , t) = n∗(−→r , t).
Note that |Ψ(−→r , t)|2 is no longer a probability but in fact describes the location
of a sub-set of all of the super-electrons.
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Thus the flow of probability
−→
J prob now describes an actual flow of particles,

or a true physical current. We can write the super-current density as
−→
J s =

q∗<
{

Ψ∗
(

~
ım∗
−→O − q∗

m∗
−→
A
)

Ψ
}
. We take the super-electrons to have charge q∗,

mass m∗, and density n∗, all real quantities.
In polar format, we expect the MQWF to be of the form Ψ(−→r , t) =

√
n∗(−→r , t)eıθ(

−→r ,t),
where n∗ = Ψ∗Ψ and θ (−→r , t) is a real phase factor. Putting this version of Ψ in
to the current density expression, we find

−→
J s = q∗n∗ (−→r , t)

(
~
m∗
−→Oθ (−→r , t)− q∗

m∗
−→
A (−→r , t)

)
.

Or, using
−→
J s (−→r , t) = n∗ (−→r , t) q∗−→v s, we can write for the super-fluid ve-

locity −→v s = ~
m∗
−→Oθ (−→r , t) − q∗

m∗
−→
A (−→r , t). Hence the (measurable) superfluid

current density is related to the gradient of the phase of the MQWF and the
vector potential, neither of which can be directly measured!

The vector potential reproduces the (measurable) magnetic field
−→
B through

its curl
−→
B =

−→O ×
−→
A , but it can be modified by the gradient of any real scalar

function of position and produce the same magnetic field:
−→
A →

−→
A ′ =

−→
A +
−→Oχ.

This flexibility in gauge choice also constrains the MQWF phase through θ →
θ′ = θ + q∗

~ χ. With this change of gauge one can show that the supercurrent
density

−→
J s (−→r , t) is gauge invariant.

0.3 Generalized London relation
Taking m∗ = 2m, q∗ = −2e and n∗ = n/2 one can see that Λ∗ = Λ! This allows
us to write the generalized London relation as follows
Λ
−→
J s = ~

q∗
−→Oθ −

−→
A .

Taking the curl of both sides gives the second London equation. Note that the
"quantum mechanics" drops out when the curl is taken!
Taking the time derivative of both sides of the London relation gives the first
London equation once the phase of the MQWF is interpreted as an energy and
the gradient gives the electric field derived from the electric potential φ.

0.4 Fluxoid Quantization
Consider a closed contour C that is entirely within a superconductor. Integrate
the generalized London relation around this contour:¸
C

(
Λ
−→
J s

)
· d
−→
l = ~

q∗

¸
C

−→Oθ · d
−→
l −
¸
C

−→
A · d

−→
l

We can use Stoke’s theorem on the last term (only). This last term yields
the magnetic flux through any surface S that terminates on the contour C:¸
C

−→
A · d

−→
l =
˜
S

−→O ×
−→
A · d

−→
S =

˜
S

−→
B · d

−→
S = ΦS .

The middle term is the integral of the gradient of the phase of the MQWF.
With careful analysis noting the 2π ambiguity of the phase, one finds that the
integral becomes: ~

q∗

¸
C

−→Oθ · d
−→
l = ~

q∗ 2πp, where p can be any positive or
negative integer, or zero.
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Now we have:
¸
C

(
Λ
−→
J s

)
·d
−→
l +
˜
S

−→
B ·d
−→
S = h

q∗ p. This is a statement of "fluxoid
quantization". The left hand side of the equation is the fluxoid, and the right
hand side is a special combination of fundamental constants known as the flux
quantum, Φ0 = h/2e where h is Planck’s constant and e is the electronic charge.
The factor of 2 was put in by hand here, but it is the value seen in experiments
on trapped flux in superconductors.

Note that only in the case where the contour C is chosen in such a way that
the current contour integral is zero do you have the special case of "flux quanti-
zation." One way to do this is to have a multiply connected superconductor in
whch C is chosen deep inside the superconductor such that Js = 0 there. Then
the flux through any surface S that terminates on C will be quantized in units
of Φ0.

The class web site shows data for the trapped flux in a superconducting
cylinder as a function of applied magnetic field. The discrete steps in magnetic
moment of the trapped flux is a clear sign of flux quantization.
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